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Abstract. In terms of effective field theory and mixed-propagator approach, we show that there is a larger
hidden effect of isospin breaking in ρ0 → π0γ decay due to a ω exchange, ρ0 → ω → π0γ. The branching
ratio is predicted as B(ρ0 → π0γ) = (11.67±2.0)×10−4, which is much larger than Particle Data Group’s
datum (6.8 ± 1.7) × 10−4 and one of charged mode, B(ρ± → π±γ) = (4.5 ± 0.5) × 10−4.

PACS. 14.40.Cs Other mesons with S = C = 0, mass < 2.5 GeV – 13.25.Jx Decays of other mesons –
12.40.Vv Vector-meson dominance – 13.40.Hq Electromagnetic decays

1 Introduction

In hadron physics, the isospin symmetry or charge symme-
try [1] is broken by inequality of the light-quark masses,
especially mu �= md, and electromagnetic interaction of
hadrons. This breaking of the isospin symmetry induces
various measurable physics effects such as π0-η, Λ-Σ0 mix-
ing, ω → π+π− decay, etc. It is common knowledge that
the effects of isospin breaking can be omitted in the isospin
conservation processes. However, this argument is not al-
ways right. The purpose of this paper is to show that a
large-isospin breaking effect is in isospin conservation de-
cay ρ0 → π0γ (so-called hidden isospin symmetry break-
ing effect). Thus, the real branching ratio for this decay
should be much larger than the datum cited by PDG-
2000 [2] and charged mode.

The anomalous-like radiative decays of light flavour
vector mesons have been observed by several group: The
branching ratio for charged ρ is B(ρ± → π±γ) = (4.5 ±
0.5) × 10−4 [3]. The branching ratios for ρ0 and ω de-
cays were first obtained in refs. [4–6] by using the data of
e+e− collider in neutral detector, but the triangle anomaly
contribution of QCD was ignored in their analysis. Be-
nayoun et al. have reanalyzed the ρ0 and ω decay to a
pseudoscalar meson plus a photon via taking into account
the triangle anomaly contribution [7]. The authors used
two models (M1 and M2) [8,9] to fit the data. It is a bit
surprising that they found two local minima for both the
two model fits, one with χ2/Ndf � 0.5 (solution A) and
another one with χ2/Ndf � 0.7 (solution B). See table 1,
where the phase ΦV of vector mesons is defined via the
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e+e− → π0γ cross-section (eq. (1) of ref. [7]). Although
the solution A has smaller χ2/Ndf , and the phase differ-
ence Φφ −Φρ is found around 210◦ in solution A, close to
expectation from the quark model (180◦), the ρ0 branch-
ing ratio is much larger than expected from the charged
mode or from SU(3) symmetry. Thus, the authors took
solution B as final result to be in agreement with isospin
symmetry. However, this conclusion is incorrect. In this
paper we shall see what happens there.

The paper is organized as follows: In sect. 2, we first
give the formula of the transition amplitude for ρ, ω →
πγ. Then we will prove this formula via two indepen-
dent methods: the effective field theory approach and the
mixed-propagator approach. In sect. 3, we will provide fi-
nal numeric results, and a brief conclusion.

2 Transition amplitude for V → πγ

The transition matrix element for vector mesons decay to
a pion and a photon is

〈π(k)γ(q1)|V (q2)〉 = ifV πγεµναβq1µε∗νq2αeβ , (1)

where eµ and εµ are the polarized vectors of vector mesons
and photon, respectively. In the large-Nc limit and in the
chiral limit, if we ignore possible contribution from reso-
nance exchange, the exact isospin symmetry implies

fρ±π±γ = f
(0)
ρ0π0γ =

1
3
f

(0)
ωπ0γ , (2)

where the superscript “(0)” denotes absence of the reso-
nance exchange. A complete consideration for ρ0 and ω0
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Table 1. Branching ratios and phases obtained from the fit to the e+e− → π0γ cross-section using two ρ0 models and assuming
Φρ = Φω. The table is abstracted from table 4 of ref. [7].

Γ (π0 → γγ) = 7.7 eV Model M1 Model M2

Solution A Solution B Solution A Solution B

ρ0 → π0γ (units 10−4) (11.51 ± 2.00) (6.17 ± 1.57) (11.67 ± 2.00) (6.77 ± 1.72)
ω → π0γ (units 10−2) (8.62 ± 0.26) (8.39 ± 0.24) (8.64 ± 0.27) (8.39 ± 0.24)
φ → π0γ (units 10−3) (1.15 ± 0.13) (1.20 ± 0.16) (1.21 ± 0.16) (1.26 ± 0.17)
Φρ = Φω (degrees) −94 ± 8 124 ± 9 −90 ± 7 125 ± 11
Φφ (degrees) 114 ± 14 248 ± 9 119+11

−18 248+18
−10

χ2/dof 29/57 38/57 29/57 36/57

decays should include the contribution from the following
resonance exchange:

f
(c)
ρ0π0γ = f

(0)
ρ0π0γ +

Πρω(m2
ρ)f

(0)
ωπ0γ

m2
ρ − m2

ω + imωΓω
,

f
(c)
ωπ0γ = f

(0)
ωπ0γ +

Πρω(m2
ω)f (0)

ρ0π0γ

m2
ω − m2

ρ + imρΓρ
, (3)

where the momentum-dependent ρ0-ω mixing amplitude
Πρω(q2) is defined in the following effective Lagrangian
(eq. (5)). The relations in eq. (3) hold more generally. In
other words, the couplings f

(0)
ρ0π0γ and f

(0)
ωπ0γ can include

corrections beyond the large-Nc limit and the chiral limit.
Meanwhile, relation (2) will be broken, but this breaking
is slight. This point can be checked by using the datum of
ρ± → π±γ decay and ω → π0γ decay if we believe that
fρ±π±γ = f

(0)
ρ0π0γ .

It must be pointed out that eq. (3) is a non-perurbative
result instead of a perturbative expression. In the rest of
this section we will prove it by two independent meth-
ods: effective field theory approach and mixed-propagator
approach, respectively.

2.1 Effective field theory approach

The most general effective Lagrangian concerning ρ0 →
π0γ and ω → π0γ decays is given as follows:

L = L0 + LI + L2 + LChPT + LWZW, (4)

where LChPT is the Lagrangian of the chiral perturbative
theory, LWZW is the Wess-Zumino-Witten Lagrangian, L0

and LI are free fields and interaction Lagrangians for vec-
tor mesons, respectively, L2 is the counterterm Lagrangian
for L0 and LI

1. Explicitly, L0 and LI can be written as

1 An effective theory is renormalized if the number of cou-
pling constants in the effective Lagrangian is infinite, e.g., chi-
ral perturbative theory. Here, we focus on the most general
effective Lagrangian, thus it can be treated as a renormalized
one.

follows:

L0 = −1
4
(∂µρi

ν − ∂νρi
µ)(∂µρiν − ∂νρiµ)

−1
4
(∂µων − ∂νωµ)(∂µων − ∂νωµ)

+
1
2
m̃2

ρρ
i
µρiµ +

1
2
m̃2

ωωµωµ + · · · ,

LI =
∫

d4q

(2π)4
eiq·x

{
Πρω(q2)

(
gµν − qµqν

q2

)
ωµ(x)ρ0ν(q)

+iεijkfρππ(q2)ρµ
i (q)πj(x)∂µπk(x)

+εµναβεijkfω3π(q2)ωµ(q)∂νπi(x)∂απj(x)∂βπk(x)

+εµναβfρπγ(q2)qµρi
ν(q)∂αAβ(x)πi(x)

+εµναβfωπγ(q2)qµων(q)∂αAβ(x)π0(x) + · · ·
}

. (5)

Several remarks are related to Lagrangian (5):

1. Focusing on any low-energy effective theory, a general
knowledge is that any coupling should be momentum-
dependent [10]. In Lagrangian (5) this statement has
been exhibited via the momentum-dependence of the
form factors fρππ(q2), fω3π(q2), etc. All these form
factors should be real function of the vector meson
four-momentum squared, q2. So that the unitarity of
S-matrix prevents us from taking the complex mass
square in the on-shell transition amplitude.

2. m̃ρ and m̃ω in L0 are not the physical masses of ρ0

and ω, since they will be shifted due to ρ0-ω mixing2.
The physical masses of ρ0 and ω correspond to poles in
their type-I complete propagators (fig. 1)3, in which we
have considered the contribution from the ρ0-ω mixing

2 Of course, there should be other possible mechanisms which
can also cause mass splitting of ρ0 and ω. In this paper, how-
ever, we only provide a heuristical discussion. Thus, we ignore
other ingredients here.

3 Due to the effective Lagrangian (5), the complete propaga-
tors of ρ0 and ω receive two kinds of contribution. One is from
ρ0-ω mixing and the other is from meson loops. We label them
as type-I and type-II contribution, respectively. In addition,
the renormalization does not shift the pole of the propagator,
thus the pole in type-I complete propagators is the same as the
one in complete propagators considering both kinds of contri-
butions.
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      =       +             +                    + …

      =       +             +                    + …

Fig. 1. Non-perturbative correction of ρ0-ω mixing to the
propagators of ρ0 and ω. The physical masses of ρ0 and ω
correspond to the poles of type-I complete propagators. Here
solid lines and dashed lines denote the non-physical propaga-
tor of ρ0 and ω, respectively, and thick solid line and thick
dashed line denote type-I complete propagators of ρ0 and ω,
respectively.

completely:

∆
(I)
(ρ)µν(q2) =

−igµν

q2 − m̃2
ρ − Πρω(q2)

,

∆
(I)
(ω)µν(q2) =

−igµν

q2 − m̃2
ω + Πρω(q2)

. (6)

These type-I complete propagators give the physical
masses of ρ0 and ω as follows:

m2
ρ = m̃2

ρ + Πρω(m2
ρ), m2

ω = m̃2
ω − Πρω(m2

ω). (7)

It is well-known that the physical mass obtained from
the pole of the complete propagator should be equal to
the one obtained from the orthogonal rotating ρ0 and
ω to their mass eigenstates.

3. When we write the interaction Lagrangian (5), we have
conveniently assumed that the widths of ρ and ω are
generated dynamically by pion loops. This assumption
can be dismissed, and it does not affect the following
formal discussion.

In Heisenberg picture, the transition matrix (1) can be
expressed in terms of LSZ reduction formula [11]

〈π(k)γ(q1), out|V (q2), in〉 = i3(Z(ρ)
3 Z

(π)
3 Z

(γ)
3 )−

1
2

×
∫

d4xd4yd4z
e−ik·x√
(2π)32ω	k

×
∑
λ,σ

εµ
	q1λe−iq1·y√
(2π)32ω	q1

eν
	q2σe−iq2·z√
(2π)32ω	q2

×(∂2
x + m2

π)∂2
y(∂2

z + m2
ρ)(0|T{π(x)Aµ(y)Vν(z)}|0)H, (8)

where Z3 are the renormalization constants of the wave
function, and the subscript H denotes the Heisenberg pic-
ture. The above expression can be transformed into the
interaction picture via

(0|T{π(x)Aµ(y)Vν(z)}|0)H =

〈0|T{π(x)Aµ(y)Vν(z)ei
∫

d4x′(LI+LChPT+LWZW)(x′)}|0〉I,
(9)

where the subscript I denotes the interaction picture.
In the language of Feymann diagrams, the non-

perturbative results can be obtained by summing all di-
agrams of the perturbative expansion (fig. 2). Here we
focus on ρ0 → π0γ decay, and the discussion for ω → π0γ

           =               +               

           +                     +   . . .

                      a)

                                             

                                              

                       

                                  . . .

                       b)

Fig. 2. Diagrams for ρ0 → π0γ decay. Here • denotes all poten-
tial meson loop corrections, thick solid lines and dashed lines
denote type-I complete propagators of ρ0 and ω, which are de-
fined in fig. 1, “· · · ” denotes all potential high-order diagrams.
In addition, the doubly thick solid lines in b) are defined as
complete propagators (not type I) of ρ0 in a). Thus the chain
approximation in a) corresponds to the renormalization of the
mass and wave function of the external line ρ0, and the chain
approximation in b) corresponds to the one of the internal
line ω.

is similar. In fig. 2, every • denotes a contribution from
all potential meson loops. Thus, the renormalization of
the mass and wave function of ρ0 and ω is necessary. It
should be pointed out that every thick solid line or thick
dashed line4 in fig. 2 is defined in fig. 1. This means that
the effect of ρ0-ω mixing has been included completely via
summing all diagrams of fig. 2.

There are two kinds of contributions to ρ0 → π0γ de-
cay. They are shown in the fig. 2a) and b), and, respec-
tively, correspond to the non-resonant contribution and
the contribution of resonance exchange. Renormalization
of mass and wave function of the external line ρ0 is present
in both fig. 2a) and 2b), while the one of the internal line
ω is present in b) only. For the external boson line, Dyson
has shwon in the adiabatic limit [12] that

(q2 − m2)∆
F
(q2)|q2=m2 −→ iZ

1
2
3 , (10)

where ∆
F
(q2) denotes the chain approximation to the ex-

act propagator, in which the mass renormalization has
been performed. This relation holds for all the external
ρ0, π0 and photon fields. Meanwhile, the renormalization
of mass and wave function of the internal line ω yields its
complete propagator as follow:

∆
(c)
(ω)µν(q2) =

−igµν

q2 − m2
ω + iΓω(q2)

√
q2

. (11)

4 We should distinguish the doubly thick solid line from the
thick solid line in fig. 2. The former is defined as complete
propagator of ρ0, while the latter is defined as type-I complete
propagator of ρ0.
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Here the dynamical width Γω(q2) is generated by pion
loops. It can be also determined by the unitarity of the S
matrix.

According to the above discussion, the LSZ reducation
formula (8) becomes

〈π0(k)γ(q1), out|ρ0(q2), in〉 =

if
(c)
ρ0π0γ(q2

2)|q2
2=m2

ρ
εµναβq1µε∗νq2αeβ , (12)

where the superscript (c) denotes the non-perturbative
coupling,

f
(c)
ρ0π0γ(q2) = f̄ρ0π0γ(q2) +

Πρω(q2)f̄ (0)
ωπ0γ(q2)

q2 − m2
ω + i

√
q2Γω(q2)

. (13)

In eq. (13), f̄ρ0π0γ(q2) and f̄ωπ0γ(q2) denote renormalized
form factors (momentum-dependent coupling), which in-
clude a meson loop correction. Labeling them by a super-
script (0) and taking q2 as mass shell of ρ, eq. (13) is just
the first of equations (3). A similar discussion holds for
the second of equation (3). So that we finish the prove for
eq. (3) in the effective field theory formalism.

2.2 Mixed-propagator approach

Alternatively, there is another well-known quantum-
mechanics method to deal with the ρ-ω mixing problem:
the approach of mixed propagator [13,14]. This approach
was developed even before the discovery of QCD. The vec-
tor meson propagator is given by (Renard representation)

Dµν(q2) =
∫

d4xe−iq.x〈0|T{Vµ(x)Vν(0)}|0〉 =

D(q2)gµν +
1
q2

(D(0) − D(s))qµqν , (14)

where s ≡ q2, and the propagator function D(s) is written
in the following way:

D(s) =
1

s − W (s)
. (15)

For multi-vector-meson channels, W (s) is the complex
mass-square matrix with non-zero off-diagonal elements
in general.

In order to define the physical states measured by
experiment, let us consider the single-vector-meson res-
onance channel case first. The Dµν of eq. (14) is now the
ordinary propagator of a vector meson. The reaction am-
plitude for a process by the exchange of this vector meson
resonance reads

M ∼ Jµ
1 DµνJν

2 = (J1 · J2)
1

s − W (s)
, (16)

where Jµ
1 and Jν

2 represent some currents and qµJµ
1, 2 = 0.

The reaction probability is

σ(s) ∼ |M|2 ∝
∣∣∣ 1
s − W (s)

∣∣∣2 . (17)

The meson resonance mass measured in the experiment is
real and is determined by the location of the maximum of
the σ(s) peak in the real s-axis. Then the resonance mass
is determined by the following equation:

∂

∂s
|s − W (s)|2 = 0 . (18)

Consequently, the mass square of the resonance, M2, is
determined by the solution of above equation, i.e.,

s =
[
ReW − 1

4
∂

∂s
(W ∗W + WW ∗)

]

×
(

1 − ∂

∂s
ReW

)−1

≡ M2(s). (19)

Now return to the ρ0-ω two-channel case, W (s) and
hence M2(s) are complex and real 2× 2 matrices, respec-
tively. The mass determination equation for physical res-
onance states should read

det[s − M2(s)] = 0 . (20)

The physical states then are the eigenvectors of the real
mass matrix M2. Following refs. [13,14] and using the
Breit-Wigner approximation, we have

W =
(

m2
ρI
− i

√
sΓρI , Πρω(s)

Πρω(s) , m2
ωI

− i
√

sΓωI

)
,

where mρI and mωI are the masses of ρ and ω in the
isospin basis. Considering ImΠρω is small and hence ig-
norable [15], we get

ReW =
(

m2
ρI

, Πρω(s)
Πρω(s) , m2

ωI

)
.

Then, in ∂ReW/∂s, only off-diagonal elements of ∂Πρω/∂s
are left. Generally, for a broad class of models Πρω(s)
at (ρ, ω) resonance, the energy region can be determined
by taking the VMD-type ρ-ω mixing Lagrangian Lρω =
fρωρµνωµν (V µν = ∂µV ν−∂νV µ, V = ρ, ω). This leads to
Πρω(s) = fρωs which satisfies Π(s = 0)ρω = 0, required
by the generic considerations in ref. [16]. Thus, we have

∂

∂s
Πρω = fρω =

Πρω

s
|s∼m2

ρ
�

6.7 × 10−3 
 1 =⇒ 1 − (∂ReW/∂s) � 1, (21)

where |Πρω| � 4000MeV2 [16] has been used in the esti-
mation. Furthermore, noting that Γω/mω 
 1, we have

M2 =
 m2

ρI
− ∂(sΓ 2

ρ )

∂s , Πρω− 1
2 (m2

ρI
+m2

ωI
) ∂

∂sΠρω

Πρω− 1
2 (m2

ρI
+m2

ωI
) ∂

∂sΠρω, m2
ωI




(22)

where the off-diagonal elements of the M2 matrix repre-
sent the ρ-ω mixing in the isospin basis. The physical ρ
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ρ 0 X 0 X 0 X

(a)

 ω X X 0 X

(b)

 ω  ω

 ωρ ρ 

ρ 

Fig. 3. The relation between the form factor of V -X vertex
and the corresponding coupling constants for the vertices. The
black circles in the vertex denote the form factor. The sin-
gle thick solid (dashed) lines denote the ρ-propagator DP

ρρ (ω-
propagator DP

ωω), and the thick solid cross dash (or dash cross
thick solid) lines denote the mixed-propagator DP

ρω (or DP
ωρ).

The thin lines are external lines of X-particles.

and ω are eigenstates of M2. In other words, the M2 ma-
trix can be diagonalized by the unitary 2 × 2 matrix C:

CM2C† =
(

m2
ρ , 0

0 , m2
ω

)
,

where

C =
(

1 −η
η 1

)
, η = −Πρω(1 − 1

2s (m2
ρ + m2

ω))
(m2

ω − m2
ρ)

. (23)

Consequently, the solutions to the physical state condition
of eq. (20) are as follows:

|ρ0
p〉 = |ρ0

I 〉 − η|ωI〉 , 〈ρ0
p| = |ρ0

p〉† ,

|ωp〉 = |ωI〉 + η|ρ0
I 〉 , 〈ωp| = |ωp〉† . (24)

Under this transformation, we have

CWC† =
(

zρ , T
T , zω

)
, (25)

where zρ = m2
ρ − imρΓρ, zω = m2

ω − imωΓω, and T =
Πρω−η(zω−zρ) are all defined in the physical state basis.
The propagator function in the physical basis DP reads

DP(s) = C(s − W )−1C† = (s − CWC†)−1 =(
(s−zρ)−1 , (s−zρ)−1T (s−zω)−1

(s−zω)−1T (s−zρ)−1 , (s−zω)−1

)
≡

(
DP

ρρ , DP
ρρTDP

ωω

DP
ωωTDP

ρρ , DP
ωω

)
. (26)

For the V -X vertex (V = ρ, ω and X represents other par-
ticles), fF

V X denotes the corresponding form-factor, fP
V X

and f0
V X denote the coupling constants in the physical

basis and in the isospin basis, respectively.
Since generally DP

ρω = DP
ωρ �= 0, the form factor is

different from the corresponding coupling constant, i.e.,
fF

V X �= fP
V X . From fig. 3, we have

DP
V V fF

V X = DP
V ρf

P
ρX + DP

V ωfP
ωX , (27)

with

fP
ρX = f

(0)
ρX − ηf

(0)
ωX , fP

ωX = f
(0)
ωX + ηf (0)

ργ . (28)

In terms of eqs. (26) and (28) the time-like EM pion
form factor is given, in the ρ-ω interference region, by

Fπ(s) = 1 + [fP
ργDP

ρρf
F
ρππ + fP

ωγDP
ωωfF

ωππ] =

1 +
fP

ργfP
ρππ

s − zρ
+

fP
ωγfP

ωππ

s − zω
+

(fP
ργfP

ωππ + fP
ωγfP

ρππ)T
(s − zρ)(s − zω)

=

1 +
(
fP

ργfP
ρππ +

(fP
ργfP

ωππ + fP
ωγfP

ρππ)T
zρ − zω

)

×
( 1

s − zρ
+ ξeiφ 1

s − zω

)
, (29)

with

ξeiφ =

[
1
3
η − (η + 1

3 )T
zρ − zω

][
1 +

(η + 1
3 )T

zρ − zω

]−1

, (30)

where f
(0)
ργ = 3f

(0)
ωγ and f

(0)
ωππ = 0 have been used, and

φ is the Orsay phase. Using Πρω � −4000MeV2 [16] in
eq. (30), we obtain that ξ � 0.012 and φ is equal to about
100◦–101◦ as s varies from m2

ρ to m2
ω. These predictions

are in good agreement with experimental data [17,15], and
hence the mixed-propagator approach is legitimate to de-
scribe the ρ-ω mixing effects in the pion EM form factor.

Now, we study the anomalous-like ρ0 → π0γ and ω →
π0γ decays in terms of the mixed-propagator approach.
Namely, taking X = π0γ in eq. (27), we have

fF
ρ0π0γ =f

(0)
ρ0π0γ−ηf

(0)
ωπ0γ +

T

m2
ρ−m2

ω+imωΓω
f

(0)
ωπ0γ ,

fF
ωπ0γ =f

(0)
ωπ0γ +ηf

(0)
ρ0π0γ +

T

m2
ω−m2

ρ+imρΓρ
f

(0)
ρπ0γ , (31)

where eqs. (24) and (26) have been used. Considering |η| �
0.006 
 1 and T � Πρω, we finally obtain eq. (3) in the
mixed-propagator formalism.

3 Numeric result and conclusion

The ω → π+π− decay suggests that the on-shell ampli-
tude Πρω(m2

ρ) is around −4000 MeV2 which is indeed very
small for most isospin conservation processes. However,
for ρ0 → π0γ we can see that m2

ρ − m2
ω + imωΓω �

(−18624 + 6577i) MeV2 is also small due to the nar-
row width of ω. Taking Πρω(m2

ρ) � −4000 MeV2 and

combining with eq. (2), we have fρ0π0γ/f
(0)
ρ0π0γ � 1.6 in

the large-Nc limit and in the chiral limit. Therefore, the
hidden isospin breaking process ρ0 → ω → π0γ indeed
plays a significant role in ρ0 → π0γ decay. In addition,
fωπ0γ/f

(0)
ωπ0γ � 0.99 is obtained, so that the contribution

from the ρ0 exchange to ω decay can be omitted due to
Γρ � Γω and eq. (2).

For predicting the branching ratio for ρ0 decay pre-
cisely, the precise on-shell ρ0-ω mixing amplitude is
needed. The investigation of the ρ0-ω mixing has been
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an active subject [13,17,15,10]. In ref. [15] the on-shell
mixing amplitude has been determined as Πρω(m2

ω) =
−[(3500 ± 300) + (300 ± 300)i] MeV2 in the pion form
factor in the time-like region, but in this fit the effect of
“direct” ωππ coupling is omitted. We quote this result
as R1. Meanwhile, ref. [10] provided a complete theoret-
ical study on this mixing, which included the effect of
“direct” ωππ coupling, and is up to the next-to-leading
order of the N−1

c expansion. The result is Πρω(m2
ω) =

−[(3956± 280) + (1697± 130)i] MeV2, and we quote this
result as R2. Then using B(ρ± → π±γ) = (4.5±0.5)×10−4

and B(ω → π0γ) = (8.5 ± 0.5) × 10−2 and assuming
f

(0)
ρ0π0γ = fρ±π±γ , we obtain5

B(ρ0 → π0γ) =
{

(11.05 ± 1.84) × 10−4 , for R1 ,
(12.25 ± 1.52) × 10−4 , for R2 .

(32)
Here we have used Πρω(m2

ρ) � m2
ρΠρω(m2

ω)/m2
ω. The

above results strongly support the fit of the solution A
instead of the solution B in table 1. In fact, from the view-
point of the experiment, solution A is also better than so-
lution B (because of smaller χ2 and the reasonable phase
difference). Therefore, we conclude that the branching ra-
tio for ρ0 → π0γ is

B(ρ0 → π0γ) = (11.67 ± 2.00) × 10−4. (33)

Here we use the result of ref. [7] which was obtained from
the experimental fit, instead of averaging our phenomeno-
logical estimates in eq. (32).

Finally, it is interesting to estimate the contribution
of the ω exchange in ρ0 → ηγ decay. This process itself is
isospin breaking due to electromagnetic interaction. The
exact isospin symmetry implies f

(0)
ρ0ηγ/f

(0)
ωηγ = 3. Hence a

similar argument gives fρ0ηγ/f
(0)
ρ0ηγ � 1.06 and B(ρ0 →

ηγ)/B(ω → ηγ) � 0.5. This result agrees with the current
experimental fits, B(ρ0 → ηγ) = (2.4+0.8

−0.9) × 10−4 and
B(ω → ηγ) = (6.5 ± 1.0) × 10−4 [2].

To conclude, we show that a hidden effect of isospin
symmetry breaking plays an essential role in ρ0 → π0γ
decay. The transition amplitude is derived by the effective
field theory approach and the mixed-propagator approach,
respectively. The results yielded by the two independent

5 This result includes meson loop correction, since here we

use B(ρ± → π±γ) and B(ω → π0γ) to fit fρ0π0γ and f
(0)

ωπ0γ

instead of using eq. (2).

methods match each other. Our result is also supported by
some experimental evidences. It indicates that the current
datum for this process in PDG should be corrected.

This work is partially supported by the NSF of China through
C.N. Yang.
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